Stéphane Shao, Pierre Jacob and co-authors from Harvard have just posted on arXiv a new paper on Bayesian model comparison using the Hyvärinen score
which thus uses the Laplacian as a natural and normalisation-free penalisation for the score test. (Score that I first met in Padova, a few weeks before moving from X to IX.) Which brings a decision-theoretic alternative to the Bayes factor and which delivers a coherent answer when using improper priors. Thus a very appealing proposal in my (biased) opinion! The paper is mostly computational in that it proposes SMC and SMC² solutions to handle the estimation of the Hyvärinen score for models with tractable likelihoods and tractable completed likelihoods, respectively. (Reminding me that Pierre worked on SMC² algorithms quite early during his Ph.D. thesis.)
A most interesting remark in the paper is to recall that the Hyvärinen score associated with a generic model on a series must be the prequential (predictive) version
rather than the version on the joint marginal density of the whole series. (Followed by a remark within the remark that the logarithm scoring rule does not make for this distinction. And I had to write down the cascading representation
to convince myself that this unnatural decomposition, where the posterior on θ varies on each terms, is true!) For consistency reasons.
This prequential decomposition is however a plus in terms of computation when resorting to sequential Monte Carlo. Since each time step produces an evaluation of the associated marginal. In the case of state space models, another decomposition of the authors, based on measurement densities and partial conditional expectations of the latent states allows for another (SMC²) approximation. The paper also establishes that for non-nested models, the Hyvärinen score as a model selection tool asymptotically selects the closest model to the data generating process. For the divergence induced by the score. Even for state-space models, under some technical assumptions. From this asymptotic perspective, the paper exhibits an example where the Bayes factor and the Hyvärinen factor disagree, even asymptotically in the number of observations, about which mis-specified model to select. And last but not least the authors propose and assess a discrete alternative relying on finite differences instead of derivatives. Which remains a proper scoring rule.
I am quite excited by this work (call me biased!) and I hope it can induce following works as a viable alternative to Bayes factors, if only for being more robust to the [unspecified] impact of the prior tails. As in the above picture where some realisations of the SMC² output and of the sequential decision process see the wrong model being almost acceptable for quite a long while…